Efficient Computation of the Permanent of Block Factorizable Matrices
نویسندگان
چکیده
We present an efficient algorithm for computing the permanent for matrices of size N that can written as a product of L block diagonal matrices with blocks of size at most 2. For fixed L, the time and space resources scale linearly in N , with a prefactor that scales exponentially in L. This class of matrices contains banded matrices with banded inverse. We show that such a factorization into a product of block diagonal matrices gives rise to a circuit acting on a Hilbert space with a tensor product structure and that the permanent is equal to the transition amplitude of this circuit and a product basis state. In this correspondence, a block diagonal matrix gives rise to one layer of the circuit, where each block to a gate acting either on a single tensor component or on two adjacent tensor components. This observation allows us to adopt matrix product states, a computational method from condensed matter physics and quantum information theory used to simulate quantum systems, to evaluate the transition amplitude.
منابع مشابه
ON THE FUNCTION OF BLOCK ANTI DIAGONAL MATRICES AND ITS APPLICATION
The matrix functions appear in several applications in engineering and sciences. The computation of these functions almost involved complicated theory. Thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. The aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. More...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملSymbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملGeneralized matrix functions, determinant and permanent
In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...
متن کاملComputation of the q-th roots of circulant matrices
In this paper, we investigate the reduced form of circulant matrices and we show that the problem of computing the q-th roots of a nonsingular circulant matrix A can be reduced to that of computing the q-th roots of two half size matrices B - C and B + C.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1208.6589 شماره
صفحات -
تاریخ انتشار 2012